
8/28/23, 6:54 AM Service anatomy - ALPHAREN CORE-Integrator

Page 1 of 5

Service anatomy

ALPHAREN CORE-Integrator (ARINT) System

(c) 2021 RENware Software Systems. RESTRICTED only for project internal use



8/28/23, 6:54 AM Service anatomy - ALPHAREN CORE-Integrator

Page 2 of 5

Product 0000-0156 0.0 document control:

210728 me new doc

230817 me last update

Table of contents:

Service anatomy

Service skeleton

Detailed operations

Deployment

Using in real cases

A service must be written in Python then deployed to ARSRV in order to be used.

Service skeleton

A service has the following high level �ow:

de�nes a handler in order to be accessed by ARSRV

it is invoked through a channel

obtain any required parameters in order to properly do its job

connects to another channel to read required input, or directly read it, or obtain it from other service, etc (here
we are in Python)

make the necessary transformation over obtained data

connects to an outgoing channel to write computed output

log any process details for future references and errors debugging



8/28/23, 6:54 AM Service anatomy - ALPHAREN CORE-Integrator

Page 3 of 5

request
service

call_service

get
data

send
results

notify

Service

External system

Service endpoint
invoking channel

data

Outgoing
channel

callback endpoint

Detailed operations

A service consists of a class which gives its name. This class must contain a method named handler  each is called
by ARSRV to execute the service.



8/28/23, 6:54 AM Service anatomy - ALPHAREN CORE-Integrator

Page 4 of 5

The above example contains:

�rst line is a comment for Python but will give important information to ARSRV ref service code serialization,
useful to duplicate / copy the service on all servers (for load balancing and fail safe purposes).

second line is a comment too but for Visual Code IDE add on to know that service should be automatically
deployed at save.

next is a Zato (part of ARSRV) library for right using services

self.response.payload  is the property where response must be returned from service processing; this
property will be used by ARSRV as response of the service

name  will be the name of this service ad used by ARSRV

the long comment (standard Pyyhon style for a multi line long string) will be used by ARSRV as service
description

NOTE. The response format could be anything you want, but for a better serial, serialization and conversion to output
channel format, IT IS RECOMMENDED TO USE A DICTIONARY for response payload.

Deployment

In order to deploy this service the following methods could be used:

directly from IDE if the corresponding extension was installed - this depends by IDE platform - VS Code has an
already written extension

putting it in directory ~/env/qs-1/server1/pickup/incoming/services  and will be loaded automatically by an
ARSRV, server1 shown in path (recommend for automate deployment)

upload from ARSRV administration console (Services > List > Upload...)

In all cases the deployment ARSRV will distribute the service on all cluster's servers.

# -*- coding: utf-8 -*-

# zato: ide-deploy=True

from zato.server.service import Service

class GetUserDetails(Service):

""" Returns details of a user by the person's ID.

"""

name = 'api.user.get-details'

def handle(self):

# For now, return static data only

self.response.payload = {

'user_name': 'John Doe',

'user_type': 'SRT'

}



8/28/23, 6:54 AM Service anatomy - ALPHAREN CORE-Integrator

Page 5 of 5

Using in real cases

In most cases will want to access this service by a request from other system. Therefore will be needed a channel
(as endpoint) where to invoke the service and sending it data (pls remember that anything that is outside ARSRV is
'linked' to ARSRV thru channel).

There could be cases when want that the service to run automatically driven by a scheduler. As long as ARSRV has
its own scheduler, there is not need a channel to invoke the service.

And �nally, the service can be invoked by other external event, like a new �le in a directory, an updated �le, a change
in a database, a new message in a queue, a mail, etc. These aspects are subject to channels and will be treated
there.

To produce an usable result, of course, the service must be linked to a channel which will receive response.

Last update: August 23, 2023


